skip to main content


Search for: All records

Creators/Authors contains: "Kasikci, Baris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Real-time embedded systems perform many important functions in the modern world. A standard way to tolerate faults in these systems is with Byzantine fault-tolerant (BFT) state machine replication (SMR), in which multiple replicas execute the same software and their outputs are compared by the actuators. Unfortunately, traditional BFT SMR protocols areslow, requiring replicas to exchange sensor data back and forth over multiple rounds in order to reach agreement before each execution. The state of the art in reducing the latency of BFT SMR iseager execution, in which replicas execute on data from different sensors simultaneously on different processor cores. However, this technique results in 3–5× higher computation overheads compared to traditional BFT SMR systems, significantly limiting schedulability.

    We presentCrossTalk, a new BFT SMR protocol that leverages the prevalence of redundant switched networks in embedded systems to reduce latency without added computation. The key idea is to use specific algorithms to move messages between redundant network planes (which many systems already possess) as the messages travel from the sensors to the replicas. As a result,CrossTalkcan ensure agreementautomaticallyin the network, avoiding the need for any communication between replicas. Our evaluation shows thatCrossTalkimproves schedulability by 2.13–4.24× over the state of the art. Moreover, in a NASA simulation of a real spaceflight mission,CrossTalktolerates more faults than the state of the art while using nearly 3× less processor time.

     
    more » « less
    Free, publicly-accessible full text available October 31, 2024
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available July 1, 2024
  4. Designers are increasingly using mixed-criticality networks in embedded systems to reduce size, weight, power, and cost. Perhaps the most successful of these technologies is Time-Triggered Ethernet (TTE), which lets critical time-triggered (TT) traffic and non-critical best-effort (BE) traffic share the same switches and cabling. A key aspect of TTE is that the TT part of the system is isolated from the BE part, and thus BE devices have no way to disrupt the operation of the TTE devices. This isolation allows designers to: (1) use untrusted, but low cost, BE hardware, (2) lower BE security requirements, and (3) ignore BE devices during safety reviews and certification procedures.We present PCSPOOF, the first attack to break TTE’s isolation guarantees. PCSPOOF is based on two key observations. First, it is possible for a BE device to infer private information about the TT part of the network that can be used to craft malicious synchronization messages. Second, by injecting electrical noise into a TTE switch over an Ethernet cable, a BE device can trick the switch into sending these malicious synchronization messages to other TTE devices. Our evaluation shows that successful attacks are possible in seconds, and that each successful attack can cause TTE devices to lose synchronization for up to a second and drop tens of TT messages — both of which can result in the failure of critical systems like aircraft or automobiles. We also show that, in a simulated spaceflight mission, PCSPOOF causes uncontrolled maneuvers that threaten safety and mission success. We disclosed PCSPOOF to aerospace companies using TTE, and several are implementing mitigations from this paper. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  5. Modern data center applications experience frequent branch mispredictions – degrading performance, increasing cost, and reducing energy efficiency in data centers. Even the state-of-the-art branch predictor, TAGE-SC-L, suffers from an average branch Mispredictions Per Kilo Instructions (branch-MPKI) of 3.0 (0.5-7.2) for these applications since their large code footprints exhaust TAGE-SC-L’s intended capacity. In this work, we propose Whisper, a novel profile-guided mechanism to avoid branch mispredictions. Whisper investigates the in-production profile of data center applications to identify precise program contexts that lead to branch mispredictions. Corresponding prediction hints are then inserted into code to strategically avoid those mispredictions during program execution. Whisper presents three novel profile-guided techniques: (1) hashed history correlation which efficiently encodes hard-topredict correlations in branch history using lightweight Boolean formulas, (2) randomized formula testing which selects a locally optimal Boolean formula from a randomly selected subset of possible formulas to predict a branch, and (3) the extension of Read-Once Monotone Boolean Formulas with Implication and Converse Non-Implication to improve the branch history coverage of these formulas with minimal overhead. We evaluate Whisper on 12 widely-used data center applications and demonstrate that Whisper enables traditional branch predictors to achieve a speedup close to that of an ideal branch predictor. Specifically, Whisper achieves an average speedup of 2.8% (0.4%-4.6%) by reducing 16.8% (1.7%-32.4%) of branch mispredictions over TAGE-SC-L and outperforms the state-ofthe-art profile-guided branch prediction mechanisms by 7.9% on average. 
    more » « less